1,175 | 14 | 130 |
下载次数 | 被引频次 | 阅读次数 |
作为经济领域较为新兴的研究方法,机器学习拓宽了经济学研究边界。那么,能否将其应用于中国上市公司的财务预测呢?本文认为,通过正确地选择模型和准确完整地收集数据,机器学习可以成为一种适用性强且效率高的预测方法,能够挖掘数据间的关系,研究非线性、不易解释的模型,预测准确度超过了传统计量经济模型。本文以机器学习为研究方法,以中国上市公司业绩爆雷预警应用为切入点,基于文献和文本挖掘选择预测变量,训练了决策树、Bagging、 AdaBoost、弹性网、Logistic回归5种模型。结果表明机器学习模型对上市公司业绩爆雷有较好的预警效果;集成学习模型Bagging和AdaBoost预测能力更强,弹性网模型最稳定。我们的研究为机器学习在财务管理领域应用提供了一些思路及建议。
Abstract:As a relatively new research method in the field of economics, machine learning has broadened the boundaries of economics research. Can it be applied to the financial forecast of Chinese listed companies? This paper argues that through correctly selecting data and models, machine learning can become a simple, precise and efficient forecasting method. It can not only study nonlinear forecasting models, whose accuracy exceeds the traditional econometric model; but also use big data resources to mine the relationship between features. To predict the performance-mine explosion of Chinese listed companies, this paper chooses machine learning as the research method, selects predicting variables based on literature research and text mining, trains five models of decision tree, Bagging, AdaBoost, elastic net and Logistic regression, and uses the validation data set to evaluate the prediction accuracy of each model. The results show that the machine learning model has a better early warning effect on the performance-mine explosion of Chinese listed companies. The ensemble learning models, Bagging and AdaBoost, have better forecasting accuracy, and the elastic net model is the most stable model. Moreover, important predicting variables have been selected.
常山.2019.业绩爆雷下,送你一套避雷宝典[EB/OL].市值风云APP,2019.1.30,https://www.sohu.com/a/292505568_585920,2020.3.30访问.
邓晓岚,王宗军,李红侠,杨忠诚.非财务视角下的财务困境预警——对中国上市公司的实证研究[J].管理科学,2006(3):71-80.
莫静.2019.业绩爆雷+财务造假!旧伤未愈又添新伤,爆雷股都有哪些特征?[EB/OL].私募排排网,2019.7.16,https://www.simuwang.com/news/show-417-227507.html,2020.3.30访问.
宋彪,朱建明,李煦.2015.基于大数据的企业财务预警研究[J].中央财经大学学报,(6):55-64.
宋歌,马涛.2019.基于深度学习的上市公司财务风险预警模型研究[J].价值工程,(1):53-56.
孙翔峰.2020.“赶场”爆雷超过150亿!上市公司缘何提前“财务大洗澡”?[N].中国证券报,2020.1.2.
尚玉皇,郑挺国.2016.短期利率波动测度与预测:基于混频宏观-短期利率模型[J].金融研究,(11):47-62.
陶思奇.2019.财务预警模型文献综述[J].中国管理信息化,22(15):37-39.
王芳,王宣艺,陈硕.2020.经济学研究中的机器学习:回顾与展望[J].数量经济技术经济研究,37(4):146-164.
王昱,杨珊珊.2019.考虑多维效率的上市公司财务困境预警研究[J/OL].中国管理科学:1-12[2020-08-14].https://doi.org/10.16381/j.cnki.issn1003-207x.2019.1366.
吴若唯,李凡群,廖国威.2019.基于LASSO-LARS的上市公司财务危机预警模型研究[J].安顺学院学报,21(2):130-135.
杨毓,蒙肖莲.2006.用支持向量机(SVM)构建企业破产预测模型[J].金融研究,(10):65-75.
张贵志.2019.上市公司爆雷面面观[N].法治周末报,9-11.
张培荣.2019.基于XGBoost模型的企业财务危机预警研究[J].财会通讯,(35):109-112.
张晴丽.2018.基于DEA-Logistic回归模型的中国上市公司财务危机预警研究[J].现代商业,(22):124-127.
张欣培,张建锋,龚奕洁.2019.A股爆雷潮[J].财经,12.19.
张亚男,刘人境,陈慧灵.2019.基于粒子群算法和核极限学习机的财务危机预测模型[J].统计与决策,35(9):67-71
郑斌.2020.上市公司业绩爆雷的八大特点与排雷抓手[EB/OL].智信研究院,2.28,https://www.gelonghui.com/p/351203,2020.3.30访问.
郑立.2019.基于RS -LSSVM制造业上市公司财务危机预警模型[J].工业技术经济,2019(7):108-113.
周敏,王新宇.2002.基于模糊优选和神经网络的企业财务危机预警[J].管理科学学报,(3):86-90.
AMANKWAH J,ADOMAKO S.2019.Big data analytics and business failures in data-rich environments:An organizing framework[J].Computers in Industry,Vol.105:204-212.
ATHEY S.2017.The Impact of Machine Learning Economics[A].In Agrawal A,K,Gans J,Goldfarb A(eds.),The Economics of Artificial Intelligence:An Agenda[C].Chicago University of Chicago Press.
BAO Y,KE B,LI B,YU Y J,ZHANG J.2020.Detecting accounting fraud in publicly traded U.S.firms using a machine learning approach[J].Journal of Accounting Research,58(1):199-235.
BREIMAN L.1996.Bagging predictor[J].Machine Learning,24(2):123-140.
BREIMAN L.2001.Random forests[J].Machine Learning,45(1):5-32.
CECCHINI M,AYTUG H,KOEHLER G J,PATHAK P.2010.Detecting management fraud in public companies[J].Management Science,56(7):1146-1160.
CHEN W,DU Y K.2009.Using neural networks and data mining techniques for the financial distress prediction model[J].Expert Systems with Applications,Vol.36:4075-4086.
du JARDIN P.2018.Failure pattern-based ensembles applied to bankruptcy forecasting[J].Decision Support Systems,107:64-77.
ERNST,YOUNG.2010.Driving Ethical Growth—New Markets,New Challenges[R].11th Global Fraud Survey.
FREUND Y,SCHAPIRE R E.1996.Experiments with a new boosting algorithm[C].Machine Learning:Proceedings of the Thirteenth International Conference,148-156.
GEPP A.LINNENLUECKE M K,O'NEILL T J,SMITH T.2018.Big data techniques in auditing research and practice:current trends and future opportunities[J].Journal of Accounting Literature,Vol.40:102-115.
GéRON,AURéLIEN.2019.Hands-on machine learning with scikit-learn,keras & tensorflow:concepts,tools,and techniques to build intelligent systems[M].O'Reilly Media,Inc.,167.
GU,S.,KELLY B.,XU,D.2020.Empirical Asset Pricing via Machine Learning[J].The Review of Financial Studies,33(5):2223-2273.
HASTIE T,TIBSHIRANI R,FRIEDMAN J.2016,The Elements of Statistical Learning:Data Mining,Inference,and Prediction[M].2nd Edition,New York:Springer.
KLEINBERG J,LUDWIG J,MULLAINATHAN S.“Prediction Policy Problems.” American Economic Review:Papers & Proceedings,105(2015):491-95.
KOTSIANTIS S B.2007.Supervised Machine Learning:A Review of Classification Techniques[J].Informatica,Vol.31:249-268.
KUMAR P R,RAVI V.2007.Bankruptcy prediction in banks and firms via statistical and intelligent techniques — A review[J].European Journal of Operational Research,Vol.180:1-28.
LI HUI,SUN J,WU J.2010.Predicting business failure using classification and regression tree:An empirical comparison with popular classical statistical methods and top classification mining methods[J].Expert Systems with Application,Vol.37:5895-5904.
LIAO J,SMITH D,LIU X.2019.Female CFOs and accounting fraud:evidence from China[J].Pacific-Basin Finance Journal,Vol.53:449-463.
MULLAINATHAN S,SPIESS J.2017.Machine Learning:An Applied Econometric Approach[J].Journal of Economic Perspectives,31(2),87-106.
QUINLAN J R.C4.5:Programs for machine learning[M].San Francisco:Morgan Kaufmann Publishers,1993.
RNNQVIST S,SARLIN P.2016.“Bank Distress in the News:Describing Events through Deep learning” arXiv preprint arXiv:1603.05670.
RUMELHART D E,HINTON G E,WILLIAMS R J.1986.Learning representations by back-propagating errors.Nature,323(9):533-536.
SADGALI I,SAEL N,BENABBOU F.2019.Performance of machine learning techniques in the detection of financial frauds,Procedia Computer Science,Vol.148:45-54.
SHMUELI G.2010.“To Explain or to Predict.” Statistical Science 25:289-310.
SUN J,LI H,FUJITA H,FU B,AI W.2020.Class-imbalanced dynamic financial distress prediction based on Adaboost-SVM ensemble combined with SMOTE and time weighting[J].Information Fusion,Vol.54:128-144.
SUN J,JIA M,LI H.2011.AdaBoost ensemble for financial distress prediction:An empirical comparison with data from Chinese listed companies[J].Expert Systems with Applications,Vol.38:9305-9312.
ZHAO X,YEUNG K,HUANG Q,SONG X.2015.Improving the predictability of business failure of supply chain finance clients by using external big dataset[J].Industrial Management & Data Systems,115(9):1683-1703.
ZHOU L,LU D,FUJITA H.2015.The performance of corporate financial distress prediction models with features selection guided by domain knowledge and data mining approaches[J].Knowledge-Based Systems,Vol.85:52-61.
基本信息:
DOI:
中图分类号:F832.51;TP181;F275
引用信息:
[1]张宏斌,郭蒙.机器学习与财务预测——来自中国上市公司业绩爆雷预警应用的经验研究[J].金融学季刊,2020,14(04):135-154.
基金信息:
国家自然科学基金项目(71790603、71872186);; 广东省基础与应用基础研究基金项目(2019A1515011409);; 广东省软科学研究计划项目(2019A101002103);; 广东省2019—2020年度会计科研课题(19-20*011);; 广东省普通高校哲学科学专项(2019GXJK078);; 2020广东省财政科研课题(Z202079)等项目的资助